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A rigid body of mass m has a fixed point O which is the origin of a fixed Cartesian 

frame O1x1y1z1, and another Cartesian frame Oxyz attached to the rigid body (Ox, Oy, Oz 

are the principal axes of inertia) and O1 ≡ O. The Euler angles, θ for nutation, Ψ for 

precession and φ for rotation (Fig. 1) are used in the following. The projections on the mobile 

frame of the angular velocities for a body with a fixed point are [1][2]: 
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Abstract: The Euler-Lagrange case of rigid body with a fixed point has several types of possible motions. 
These  motions  are  qualitatively  studied  in  many  references,  but  the  reader  will  have  to  use  intuition to 
understand these motions. Moreover, some characteristics as the nutation amplitude are not determined in 
existing studies. According to the mechanical properties of the rigid body, in this paper are determined the 
initial  conditions  required  to  obtain  each  of  the  known  types  of  motion.  Numerical  solutions  are 
graphically presented in an easy to understand manner.
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Rezumat: Cazul  Euler-Lagrange  de  integrabilitate  pentru  rigidul  cu  punct  fix  conduce  la  o  serie  de 
mişcări posibile. Aceste mişcări sunt studiate din punct de vedere calitativ în multe lucrări, dar cititorul 
va trebui să se bazeze pe intuiţie pentru a înţelege aceste mişcări. Mai mult, unele caracteristici precum 
amplitudinea mişcării de nutaţie nu sunt determinate în aceste lucrări. In această lucrare sunt determinate 
condiţiile  iniţiale  necesare  pentru  a  se  obţine  fiecare  dintre  aceste  mişcări  în  conformitate  cu 
caracteristicile  mecanice  ale  rigidului  considerat. Soluţiile  numerice  sunt  determinate  grafic  într-o 
manieră uşor de înţeles.

Cuvinte cheie: Corp rigid, Punct fix, Cazul de integrabilitate Lagrange – Poisson

1. INTRODUCTION

  The study of the motion of a rigid body having a fixed point dates more than 200 years. 
However in many recent textbooks, some consequences of these equations are not rigorously 
deduced  and  no  practical  integration  results  are  given.  The  present study  presents  the  most 
interesting trajectories of the mass center as functions of the initial conditions.

  2. THEORETICAL MODEL
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The equations from the theorem of angular momentum of a rigid body with a fixed point are: 
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in which G=mg is the weight of the body, h is the distance between the mass centre and the 

fixed point, J1 and J3 are the two distinct central principal mechanical moments of inertia of 

the body determined about the Oxyz frame. 

Fig. 1 Rigid body configuration  

In the absence of dissipating force, the total energy of rigid body with a fixed point is a 

constant denoted 1C : 
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The first two equations from (1) lead to 
2 2 2 2 2sinx yω ω ψ θ θ+ = + &&  , which injected in (3) give 

the expression: 

                                           2 2 2sin cosψ θ θ α β θ+ = −&& ,                                                   (4) 

in which ,α β are constants, the first one depending on the initial conditions: 
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From the moment of the weight force, it follows that the projection of the angular momentum 

of the rigid body with respect to the fixed point 1O  on the 1zO  axis is a constant. Using the 

symbol 2C  for this quantity, it follows that: 
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From the first two equations (1) and (6), it can be obtained: 

                                                   2sin cosψ θ γ δ θ= −& ,      (7) 

where: 
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It is obvious that the equations (4) and (7) lead to: 

                               ( ) ( )
22 2 2sin cos sin cosθ θ α β θ θ γ δ θ= − − −& .                                  (9) 

From the practical point of view of the numerical integration, the time derivative of eq. (9) is 

necessary, for 0θ ≠& : 
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The initial conditions can be set in this differential equation as 0 0 0 0;t tθ θ θ θ= == =& & . 

 

3. NUMERICAL SOLUTION 
 

The numerical solutions are obtained by integration using the MATLAB [3] computing 

program. The classes of solutions are presented in [2], but it is more useful to express these 

solutions as functions of the initial conditions coupled with the mechanical parameters. The 

Oz axis is crossing a sphere of radius 1 centered in the fixed point, leaving a trace on the 

sphere. This trace is an easy way to understand the motion.  

If 2 0α γ− < the motion takes place between two parallel circles above the “equator” (Fig. 2), 

if 2 0α γ− >  one tangency circle is below the “equator” (Fig. 3) and if 2 0α γ− = the 

trajectory is in the “northern hemisphere” and tangent to the “equator”.  

 

  

 

Fig. 2. Wavy motion between two parallel circles  
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Fig. 3 The path crosses the “equator” 

 

 

        
 

Fig. 4. Motion with loops 

 

If the precession velocity cancels before the nutation velocity, the motion presents loops     

(Fig. 4). As a particular case, when both velocities cancel at the same moment, there are 

return points in the path and these points are on the highest “latitude” circle (Fig. 5). Even if 
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the plot cannot present local details, at the return points, the path is tangent to the “meridian”. 

This fact is presented in [1] based on a geometrical interpretation.  

 

Fig. 5 Motion with return points 

 

One important integration case is the regular precession defined by constψ =& . After a 

series of developments, the regular precession can be expressed by the following condition on 

the initial conditions: 

                                         ( )2 2
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(11) 

 

An example of numerical solution in presented in Fig. 6. The path is a “parallel” circle.  

 

Fig. 6 Regular precession 
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4. CONCLUSIONS 
  

This study presents the principal motions of a non-centered rigid body with a fixed point 

in a visually correct manner. The numerical solutions prove their usefulness in understanding 

the characteristics of the possible motions in this important case of rigid body.   
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